A Convergence Analysis of the Peaceman-Rachford Scheme for Semilinear Evolution Equations
نویسندگان
چکیده
The Peaceman–Rachford scheme is a commonly used splitting method for discretizing semilinear evolution equations, where the vector fields are given by the sum of one linear and one nonlinear dissipative operator. Typical examples of such equations are reaction-diffusion systems and the damped wave equation. In this paper we conduct a convergence analysis for the Peaceman– Rachford scheme in the setting of dissipative evolution equations on Hilbert spaces. We do not assume Lipschitz continuity of the nonlinearity, as previously done in the literature. First or second order convergence is derived, depending on the regularity of the solution, and a shortened proof for o(1)-convergence is given when only a mild solution exits. The analysis is also extended to the Lie scheme in a Banach space framework. The convergence results are illustrated by numerical experiments for Caginalp’s solidification model and the Gray–Scott pattern formation problem.
منابع مشابه
A full space-time convergence order analysis of op- erator splittings for linear dissipative evolution equa- tions
The Douglas–Rachford and Peaceman–Rachford splitting methods are common choices for temporal discretizations of evolution equations. In this paper we combine these methods with spatial discretizations fulfilling some easily verifiable criteria. In the setting of linear dissipative evolution equations we prove optimal convergence orders, simultaneously in time and space. We apply our abstract re...
متن کاملDimension splitting for quasilinear parabolic equations
In the current paper, we derive a rigorous convergence analysis for a broad range of splitting schemes applied to abstract nonlinear evolution equations, including the Lie and Peaceman–Rachford splittings. The analysis is in particular applicable to (possibly degenerate) quasilinear parabolic problems and their dimension splittings. The abstract framework is based on the theory of maximal dissi...
متن کاملStability and Convergence of the Peaceman-Rachford ADI Method for Initial-Boundary Value Problems
In this paper an analysis will be presented for the ADI (alternating direction implicit) method of Peaceman and Rachford applied to initial-boundary value problems for partial differential equations in two space dimensions. We shall use the method of lines approach. Motivated by developments in the field of stiff nonlinear ordinary differential equations, our analysis will focus on problems whe...
متن کاملDimension Splitting for Time Dependent Operators
In this paper we are concerned with the convergence analysis of splitting methods for nonautonomous abstract evolution equations. We introduce a framework that allows us to analyze the popular Lie, Peaceman– Rachford and Strang splittings for time dependent operators. Our framework is in particular suited for analyzing dimension splittings. The influence of boundary conditions is discussed.
متن کاملA semi-proximal-based strictly contractive Peaceman-Rachford splitting method∗
The Peaceman-Rachford splitting method is very efficient for minimizing sum of two functions each depends on its variable, and the constraint is a linear equality. However, its convergence was not guaranteed without extra requirements. Very recently, He et al. (SIAM J. Optim. 24: 1011 1040, 2014) proved the convergence of a strictly contractive Peaceman-Rachford splitting method by employing a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2013